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Some comments arc made on a recent paper of B~rnighausen IActa Cryst. (1975), A31, S31. A few improvements are 
suggested; these include a more detailed partial synopsis in relation to Landau theory, and a comparison between 
sequences of subgroups and physical transitions in real compounds. 

A short paper on the 'family tree' of perovskite-like 
structures has been published (Bfirnighausen, 1975). 
B~irnighausen has built up a diagrammatic set of sequences 
of maximal subgroups of Pm3m from the tables of  Neubfiser 
& Wondratschek (1966a,b) and has arranged structures 
which are topologically equivalent to the perovskite structure 
according to the group-subgroup relations of their space 
groups. His paper is very interesting because it rationalizes 
the structural relationship between real chemical com- 
pounds; I think that this process should be systematically 
extended to other families of chemical compounds.  The 
paper of Bfirnighausen is also fruitful because it suggests new 
questions for research. For instance, his synopsis clearly 
shows subgroups of Pm3m which are either attached or not 
attached to real derivative structures of the perovskite 
structure: is there a theoretical reason for a specific sub- 
group not to be associated with a real derivative structure? 
The 'family tree' exhibits, from the viewpoint of symmetry,  
the relations which exist between different forms of the same 
real compound:  is there a theoretical reason why this com- 
pound possesses these precise forms? I have given some 
partial answers to these questions elsewhere (Billiet, 1977). 

In the present paper, I only wish to make some comments 
and suggest a few improvements. Bfirnighausen has limited 
his synopsis to the ,subgroups which are significant for 17 
selected crystal structures. The synopsis has not pointed out 
all the subgroups of Pm3m and it can certainly be extended 
to other perovskite-like structures. Let me remark that sub- 
groups are infinite in number; theoretically, the table must 
continue indefinitely downwards;  moreover, all the maximal 
subgroups of any group of the table have not been indicated. 
For example, we have tabulated the translationengleich 
maximal subgroups (Table 1) and the klassengleich maximal 
subgroups (Table 2) of Pm3m; these maximal subgroups are 
finite in number. Furthermore, there are special klassengleich 
maximal subgroups of the space group Pm3m with ideal 
perovskite structure which have the same space-group 
symbol Pm3m; the vectors of the conventional cubic unit cell 
of these isosymbolic maximal subgroups are obtained when 
those of the ideal perovskite are multiplied by prime odd 
integers k. For each value k, there are k 3 conjugated iso- 
symbolic maximal subgroups (index k 3) with different 
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settings (origin in [ p,q,r] with reference to the setting of ideal 
perovskite; p,q,r are integers with the conditions: 0 _< p < k, 
0 <_ q < k, 0 <_ r < k) (Billiet, 1978). Therefore the iso- 
symbolic maximal subgroups are infinite in number. The 
synopsis has not shown all the group-subgroup relations; 
some groups can be maximal subgroups of several other 
groups as indicated in Fig. l(a). Moreover, B~irnighausen has 
reassembled in one single box all the subgroups which belong 
to the same index and to the same space-group symbol. A 
more detailed presentation (Fig. lb) of the synopsis shows 
that there are two non-conjugated subgroups Fm3c, four 
conjugated subgroups R3m, two classes of  four conjugated 
subgroups R3c, four conjugated subgroups R3m and four 
conjugated subgroups R3c. Equivalent derivative structures 
(i.e. twin and antiphase domains of the same transition) 
correspond to conjugated subgroups (i.e. subgroups g and g' 
of Pm3m, such as g' -- tgt -~, with t an element of Pm3m); 
the number of these equivalent derivative structures is given 
by the index of their subgroups with reference to Pm3m 
(Billiet, 1969). Derivative structures connected with non-con- 
jugated subgroups are not equivalent (Table 3). Particularly, 
it should be noted that the choice of the origin of the sub- 
groups is of great importance at the level of equivalent 
positions (Table 3) (Billiet, 1978). Furthermore, it can be 

Table 1. Translationengleich maximal subgroups of  Pm3m 

The index of the subgroup is given within the first set of parentheses. 
The vectors of the conventional unit cell of the subgroup are given 
within the next set with respect to the vectors (A,B,C) of the 
conventional unit cell of Pm3m. The origin of any subgroup is con- 
fused with that of Pm3m. Subgroups in square brackets are 
conjugated. 

[P4/mmm (3) (A,B,C); P4/mmm (3) (B,C,A); P4/mmm (3) 
(C,A,B)]; [R3m (4) (A,B,C); R3m (4) (A,--B,--C); R3m (4) 
(-A,B,-C);  R3m (4) (-A,-B,C)I;  Pm3 (2) (A,B,C); P432 (2) 
(A,B,C); P43m (2) (A,B,C). 

Table 2. Klassengleich maximal subgroups of  Pm3m 

The index of the subgroup is given within the first set of parentheses. 
The coordinates of the origin of the subgroup are given within the 
next set with reference to the conventional setting of Pm3m. The 
vectors of any subgroup are twice those of Pm3m. Subgroups 
between square brackets are conjugated. 

Fm3m (2) (0,0,0); Fm3m (2) t~ i ~. Fm3c (2) (0,0,0); Fm3c (2) 
( ~ "  [Im3m (4) (0,0,0); Im3m (4) (0,1,1); Im3m (4) (1,0,1); 

(i i i). Im3m (4) ~,-~,-~ , Im3m (4) (1,1,0)1; I1m3m (4) ~,~,~, t~ ~ ~)- lm3m (4) 
I 1 . ¢ I I I ~ 1  (--7,½,-7), lm3m (4) ~--'~,--7,~p,. 
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Fig. 1. (a) A condensed part of the set of subgroups of Pm3m. The non-conventional symbol of Bfirnighausen is given in parentheses. (b) A 

detailed view of the part gwen in (a). The conventional settings are given with reference to the conventional setting of Pm3m: (1) (A,B,C), 
(2) (A,-B,-C) ,  (3) ( -A,B,-C) ,  (4) (--A,-B,C), (5) (2A,2B,2C), (6) (A + B, B + C, A + C), (7) (A - B, - B  - C, A - C), (8) 
(-_A + B, B - C, --A - C), (9) (--A -- B, - B  + C, --A + C). o: origin at (0,0,0); d: origin at (½,½,{). Rhombohedral axes for space groups 
R3m, R3c, R3m, R3c. 

shown (Fig. lb) that all the conjugated subgroups R3m of 
Pm3m are not subgroups of  all the conjugated subgroups 
R3m of Pm3m but that each subgroup R3m is a subgroup of 
only one subgroup R3m. This is very important  from the 
thermodynamical  point of  view of the phase-transition 
theory of  Landau:  since the index is equal to 2, a transition 
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Fig. 2. Symmetry relations and physical transitions in NaNbO r 
Each dotted line represents in condensed form several sequences 
of subgroups such as in Fig. l(b). Physical transitions are 
represented by thick lines together with the temperatures of 
transition. On the left is the degree of preserved symmetry 
(inverse of the index of the subgroup). Unit cells of subgroups are 
given with reference to Pm3m: (II) P4/mbm (A + B, --A + B, C) 
(III) Cmcm (2A,2B,2C), (III') Pmmn (2A,2B,2C), (Ill") Pmrnn 
(2A,2B,6C), (IV) Pbcm (A + B, -- A + B, 4C), (V) R3c 
(rhombohedral axes: A + B, B + C, A + C), (Q) Pmc2, (2C, 
A + B, - A  + B). The antiferroelectric form (IV) can be changed 
into the ferroelectric form Q by the application of an electric 
field. 

from a group R3m to its subgroups R3m can be second- 
order (one phase at the transition point) while transitions to 
other (non-subgroup) groups R3m are necessarily first-order 
(two phases at the transition point). Is the Landau theory sig- 
nificant with an induced transformation in a sample from a 
subgroup R3m to another subgroup R3m (ferroic trans- 
formations)? Finally, for a given chemical compound  with 
several perovskite-like structures, it would be desirable to 
have its sequence of  physical transitions assembled together 
with its set of  g roup-subgroup  relations. Therefore, in Fig. 2 
(after Wood,  Miller & Remeika,  1962; Lefkowitz, 
Lukaszewicz & Megaw, 1966; Athee, Glazer & Megaw, 
1972; Glazer & Megaw, 1972; Ishida & Honjo,  1973) it can 
be seen that some transitions in N a N b O  3 are associated with 
group-subgroup  steps while some others are connected with 

Table 3. Two non-equivalent derivative structures belonging 
to two non-conjugated subgroups Fm3m 

Ideal perovskite structures 

O 3(d) 4/mmm ½,0,0; , . 0,~,0, 0,0,~ 
A l(b) m3m ½,½,½ 
B 1 (a) m3m 0,0,0 

NaCI order on octahedral sites B in perovskite structure: Fm3m (the 
vectors of the conventional unit cell are twice those of Pm3m; the 
origin is the same as that in Pm3m) 

(o,o,o; o,½,½; ½,o,½; ½,½,o) + 

O 24(e) 4mm x,0,0; 0,x,0; 0,0,x; .~,0,0; 0,~,0; 
0,0,~ (x ~_ B- 

A 8(c) 3~3m {,{,.{; {.,{,{. 
II B" 4(b) m3m ~,~,½ 

B' 4(a) m3m 0,0,0 

NaCI order on cuboctahedral sites A in perovskite structure: Fm3m 
(the vectors of the conventional unit cell are twice those of Pm3m; 
the origin of Fm3m is at the centre of the unit cell of Pm3m) 

(o,o,o; o,½,½; ½,o,½; ½,½,o) + 

0 24(d) mmm 0,{-,{; {.,0,{; {,{,0; 0,{,{; {,0,{; {-,{,0 
B 8(c) zi3m {,{,{; {,{,{ 
A" 4(b) m3m ½,½,½ 
A' 4(a) m3m 0,0,0 
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non-comparable group steps. The former may be second- 
order - provided that Landau theory authorizes it - while the 
latter are obligatory first-order. Contrary to a generally 
accepted opinion, it can be seen that here the symmetry does 
not necessarily decrease when the temperature is lowered. 

The cost of the present work has been fully supported by 
the author on his own salary. 
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Kaul & Saxena [Acta Cryst. (1977), A33, 992-996] have reported the existence of long-range and short-range order in a 
non-stoichiometric phase 'LnO x' (Ln = rare earth). It is shown that the experiments they are describing are indeed the 
oxidation of the rare-earth hydride LnH 2 into the rare-earth cubic C-type sesquioxide. The interpretation they give of 
their experiments is to be discarded entirely. 

Kaul & Saxena (1977) recently published a paper on rare- 
earth metal-oxide thin crystals which contains an inter- 
pretation of the experimental data considerably at variance 
with the results of other workers in this field. Some of the 
interpretations suggested for the chemical composition of 
the thin films and for the diffraction data have been pub- 
lished before and have been criticized by several teams of 
investigators (Gasgnier, Ghys, Schiffmacher, Henry la 
Blanchetais, Caro & Boulesteix, 1974; Gasgnier, Henry la 
Blanchetais & Caro, 1976; Curzon & Singh, 1975a,b, 
1977a,b; Surplice, 1976; Cadim & AI-Bassam, 1977; Safrai, 
Buckwald & Hirsch, 1976). We should like to point out once 
again some of the errors involved. 

The stability of rare-earth monoxides in the solid state 

Kaul & Saxena (1977) suggest the existence in thin films of 
the monoxide 'LnO' (Ln = rare earth) as a f.c.c, phase. They 
claim that this material is 'reasonably well understood'. They 
give as evidence the old paper by Eick, Baenziger & Eyring 
(1956) but they choose to ignore more recent papers of two 
of these authors (Felmlee & Eyring, 1968; Work & Eick, 
1972), which criticize their first paper, and they also ignore 
the work of McCarthy & White (1970) as well as that of 
Brauer, B~rnighausen & Schultz (1967). 

Felmlee & Eyring (1968) have shown that for Sm the 
compounds called 'SmO' and 'Sm20' are in fact SmN~_xOx 
and SmH 2 respectively, and that the cation is always in the 
trivalent state. 

Work & Eick (1972) have shown that it is thermo- 

dynamically impossible to prepare 'ScO' and that the 
material elaborated by Dufeck, Bronzek & Petrie (1969) is, 
in fact, an oxynitride ScOxNy. 

McCarthy & White were unable to prepare 'SmO' by 
oxidation-reduction (the technique for the preparation of 
EuO). They describe several unsuccessful attempts to obtain 
the monoxide. Brauer et al. (1967) have shown that it is 
impossible to obtain 'SmO' by reaction of the metal with the 
sesquioxide. 

It is well known from the work of Johnson (1969) that the 
reducibility order of the rare earths is: Eu, Yb, Sm, Tm, Pm, 
Dy, Nd, Ho, Er, Pr, Tb, Ce, Gd and La. It is possible to 
obtain divalent cations down to Nd in halide systems but in 
chemical systems involving O, it is possible to reduce only 
Eu 3÷ and possibly Yb 3÷. 

Kaul & Saxena (1977) suggest that their 'LnO x' f.c.c. 
phase may also have a value of x larger than 1.5 tending to 
the LnO 2, CaF2-type phase. Such a phase is known only for 
Ln = Ce, Pr, Tb (Kunzmann & Eyring, 1975) and for the 
last two rare earths this phase is stable only at a high 
pressure of oxygen. It is highly improbable, if not completely 
impossible, that a phase with x > 1.5, especially for Er and 
Dy, will be prepared under a 10 -6 torr vacuum. 

The f.e.c, phase 

Kaul & Saxena (1977) claim, after several of their co- 
workers and Semiletov, Imanov & Ragimli (1974, 1976), 
that in thin films the 'LnO' phase exhibits an f.c.c, electron 
diffraction pattern. They add that 'the oxygen content in 


